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Abstract. Using measurements in the frequency domain we 
have measured quality factor Q and travel times of direct and 
side-reflected elastic waves in a 1.8 m long sample of Berea 
sandstone. The frequency domain travel time (FDTT) method 
produces the continuous-wave (cw) response of a propagating 
wave by stepwise sweeping frequency of a driving source and 
detecting amplitude and phase of the received signal in 
reference to the source. Each separate travel path yields a 
characteristic repetition cycle in frequency space as its wave 
vector-distance product is stepped; an inverse fast Fourier 
runsform (IFFT) reveals the corresponding travel time at the 
group velocity. Because arrival times of direct and reflected 
elastic waves appear as spikes along the time axis, travel times 
can be obtained precisely, and different arrivals can be clearly 
separated. Q can be determined from the amplitude vs. 
frequency response of each peak as obtained from a moving 
window IFFT of the frequency-domain signal. In this sample 
at ambient conditions compressional velocity Vp is 238.0 rn/s 
and Qp is 55. 

Introduction 

Ordinarily, elastic wave travel time comes from direct 
measurements of transmission times between a pulse source 
and a receiver. Direct travel time can be difficult to measure 
because first-arriving energy is often emergent, i.e., slowly 
rising. This problem occurs particularly in heterogeneous 
materials such as rocks where complex, slightly different paths 
are available to distort wavefronts and introduce path 
dispersion. Other problems with directly measured travel 
times can include low signal to noise (s/n) ratios in attenuating 
media and distinguishing arrivals that overlap as a result of 
refraction, reflection, and scattering. Even interference 
methods such as pulse-echo overlap are commonly analysed in 
the time domain. The alternative approach described here, 
which requires controllable sources, avoids most of these 
problems by using time-averaged data collected wholly in the 
frequency domain; it is not a Fourier-transformed time-domain 
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signal. Although this technique became apparent to us as a 
result of frequency domain measurements of nonlinear elastic 
properties in which nonlinear interactions filtered out all but 
one frequency (Johnson et al., 1991), the method of frequency 
domain reflectomerry has been independently developed in 
radar (Isuka and Freundorfer, 1983) and optics (Ghafoori- 
Shiraz and Okoshi, 1986; Shadaram and Hippenstiei, 1986; 
Vanhamme, 1990). 

Method 

Figure 1 is a simplified schematic diagram of an acoustic 
wave transmission experiment. The driving transducer 
receives a reference signal of the form 
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Fig. 1. Experimental configuration. The computer controls 
signal duration, time delays, and signal averaging in the digital 
voltmeter, and it stores voltage output from the DVM. 
Possible travel paths in addition to direct transmission include 
side wall reflections and surface waves. 
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•I"ref(co,t) = Aref cos(cot) (1) e 

• $ where angular frequency co = 2nf and f is frequency. If we 
consider a single travel path along the vector Li having length 
Li, the signal received by the detector is 

•sam(C0,t) = Ai(co,Li) e -•tfLi/Qv cos(cot- kioLi) 
= Ai(o0,Li) e -•cfTi/Q cos(tot - coTi) (2) 

where ki is wave vector of magnitude 2x/X, •. is wavelength, v 
can be compressional, shear, or surface wave velocity, and 
travel time Ti = Li/v. At each frequency step a transmitted (or 
reflected) signal can be detected with respect to the reference 
frequency, for instance, by a lock-in amplifier. In the high 
frequency range of hundreds of kHz for these experiments our 
detector was an electronic multiplier. If we neglect beam 
pattern and amplitude changes in the transducer, the product of 
the reference signal (1) and the phase-delayed signal (2) is a 
voltage that can be written in the form of sum and difference 
frequencies 

V = KAr• fAi e -xfTi/Q [cos(2cot - coTi) + cos(coTi)] (3) 
where K is a constant incorporating preamplifier and multiplier 
characteristics. Low-pass filtering plus time-averaging in the 
digital voltmeter (DVM) eliminates the first term in (3), and 
only the second, dc term remains. Incrementing frequency in 
steps 15f increments koLi = coTi and produces a response in the 
frequency domain that has a characteristic periodicity 
/xfi = 1/Ti (Johnson et al., 1991). It should be pointed out 
that Ti contains the time delays across the transducers as well 
as any electronic delays, but these delays can be compensated 
for if the reference signal also passes through similar 
transducers and preamplifiers (Johnson et al., 1992), as was 
done for this experiment. 

In practice, a received signal can contain a number of 
possible transmission/reflection paths Li between source and 
detector. A plausible way to pick out each Ti is to perform an 
inverse fast Fourier transform Ok'PT) on the frequency domain 
signal. Figure 2 shows the stepped frequency-domain 
response along the length of a Berea sandstone sample of 
dimensions 1829 x 453 x 453 mm. Figure 3 is the 
corresponding IFFT. The reversed presentation may be 
confusing at first, i.e., the time domain response of Figure 3 

3 

• 2 

75 90 105 120 135 150 

Frequency, kHz 

Fig. 2. Frequency domain response for first 150 kHz of a 
sweep from 75 to 250 kHz in steps of 50 Hz. 
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Fig. 3. Inverse Fourier transform of data from Fig. 2 
showing arrival of each mode as a separate peak on the time 
axis. 

has the peaks ordinarily seen in FFT frequency response 
curves. A singular advantage of the FDTT method lies in this 
separation of arrivals as peaks on the time axis 

An intuitive way of interpreting an FDTT curve is as the 
broadband response to a source in the form of a delta function 
impulse (whose Fourier transform contains all frequencies). 
Each peak along the time axis represents an impulse that has 
traveled along a different path. In this interpretation a peak 
occurs for a maximum energy arrival and thus corresponds to 
the group velocity along its path. Arrivals after the first peak 
at 0.770 'ms in Figure 3 are those of waves reflected off the 
sides of the sample in different modes. The direct travel time 
corresponds to a group velocity of 2380 m/s. 

There are several advantages to the FDTT method over 
simply measuring a pulse transmission time, the most obvious 
being the clear delineation of arrivals that would be hard to 
separate for transmitted pulses when different phases overlap. 
Even the first arrival of a pulse emerges slowly in 
inhomogeneous media because of wavefront distortion as 
different portions of the wave travel along paths of slightly 
different velocity. Further, time-averaging permits selectively 
improving s/n at those frequency steps where noise is a 
problem without having to stack an entire wavetrain. Thus, 
when transducers were placed side-by-side at one end of the 
sample, the improved s/n obtainable from the FDTr method 
permitted observation of the reflected wave off the back face of 
the rock, a total distance of twice the sample length or 3.66 m, 
although we could not detect an arrival by pulse transmission 
using the same apparatus (Johnson eta!., 1992). We note that 
this configuration resembles that used in reflection 
seismo!ogy. 

Conditions are imposed on this method by the properties 0f 
digital tranforms. Thus, the Nyquist sampling criterion to 
prevent aliasing means •Sf must be less than 1/(2Trnax), where 
T max is the maximum travel time for which a signal is 
received. Time resolution aT-- 1/fmax can be improved by a 
wide frequency band fmax, but of course this requires longer 
measurement time. 

Attenuation Measurement 

From (3) we see that the amplitude of each arrival is 
exponentially attenuated by its travel time (equivalent to. 
distance) and by Q-1. Instead of applying an IFFT to an ent• 
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frequency domain response as done above we can apply a 
moving window IFFT to frequency bands within a signal such 
as that of Figure 2. When log(amplitude) is plotted against 
frequency or frequency-time product for art arrival peak, the 
slope yields Q for the corresponding travel path and wave 
mode. Figure 4 shows a moving-window transform for the 
largest peak of Figure 3. The remarkable s/n allows intensity 
data to be obtained over almost 4 orders of magnitude. In this 
case compressional wave Qp = 60 for two different frequency 
sweeps having different starting and stepping frequencies. As 
a check on the method we also show results for a noise-free 
synthetic signal having Q = 60. If we include a small 
correction for geometrical spreading, which is inversely 
proportional to frequency in the far field (Pippard, 1978), the 
slope in Figure 4 should be steeper by an increment of log2 = 
0.3 for a factor of 2 increase in frequency. Correcting for this 
change gives Qp = 55. From differences between measure- 
ments and uncertainties about beam spreading we estimate this 
value to be uncertain by about + 5. 

This Qp is higher than values approaching 20-30 for 
weakly confined Berea specimens of cm-size as determined 
from the FFT of a pulsed ardva! in almost the same frequency 
band (Toks/Sz et al., 1979; Johnston and Toks6z, 1979; 
Spencer, 1979; Frisillo and Stewart, 1980; Johnston and 
T0ks/Sz, !980). (Presumably, if these specimens were 
unconfined, their Q's would be still lower.) The value is less 
than 140 for QE of weakly confined Berea sandstone in 
extensional resonance in the kHz range (Winkler, et al., 
!979). In comparison with unconfined specimens at ambient 
humidity as measured in resonance it agrees well with Qp _= Qs 
= QE = 58 (Clark, et al., 1980) and with shear wave resonance 
Qs-= 50 in dry Berea sandstone (Vo-Thanh, 1990). Thus, to 
the extent that Berea sandstone can be assumed uniform, these 
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Fig. 4. Amplitude (circles) of the largest peak shown in Fig. 3 
rs. frequency-travel time product as obtained from a moving 
window IFFr of data of Fig. 2. Also shown are results from 
mother sweep in steps of 100 Hz from 100 to 430 kHz for the 
same travel path (squares) and from a synthetically generated, 
noise-free test signal of Q = 60 (diamonds). Each window 
comprises 1024 points (51.2 and 102.4 kHz, respectively, for 
the two data sets) and overlaps 3/4 of the points in the 
previous window. Frequency is the mean within each 
window, and amplitudes are arbitrary. The error bar indicates 
the standard deviation of the fits to a straight line. 

results suggest an apparent variation of measured Q that 
depends on measurement technique such that the resonance 
and FDTT methods yield higher values. A possible reason is 
that the latter two methods have the common feature that 
measured intensities vary over marty orders of magnitude so 
that corrections to measured slopes are relatively small. As a 
further observation, if we consider scaling with size, this very 
large sample can incorporate a larger range of crack sizes than 
can most laboratory specimens and therefore might be 
expected to have lower Q. However, there is no obvious size 
effect on Q, nor does it seem to vary markedly with frequency 
over the two orders of magnitude between the resonance and 
FDTT methods. We note that if there were a frequency 
dependence of Q and an associated velocity dispersion, then 
Q-1 would be given by the local slope on a plot such as Figure 
3. Slope changes over such a limited frequency range would 
be hard to detect in the presence of noise. 

Conclusions 

For this sample, which was at ambient conditions, 
compressional velocity is 2380 m/s and Qp is 55. Although 
only one of the modes was analyzed here, the FDTT approach 
permits calculation of Q for each mode that arrives, e.g, shear, 
compressional, or combinations produced by reflections. 
Other features of the FDTT method have been documented 
elsewhere (Johnson, et al., 1992). These include application 
of nonlinear elasticity to generating low frequency waves 
having greater propagation distances, demonstration that phase 
information for each arrival is obtainable, and extension to 
using both in-phase and quadrature signals. 

In principle, with a frequency-travel time product close to 
the range of Figure 3 it should be possible to use the FDTT 
approach as an alternative to cross-correlation analysis in 
order to obtain two-way travel times and Q in refraction and 
refraction seismology where controllable sources are available, 
e.g., in Vibroseis © methods. Observation of multiple echoes 
(Johnson, et al., 1992) suggests that reverberations in room 
acoustics could be studied by this approach; similarly, other 
long-term effects such as scattering-induced codas in 
architectural acoustics and seismology could be treated. 
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