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Equation of state and wave propagation in hysteretic
nonlinear elastic materials

K. R. McCall and R. A. Guyer!
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New Mexico

Abstract. Heterogeneous materials, such as rock, have extreme nonlinear elastic
behavior (the coefficient characterizing cubic anharmonicity is orders of magnitude
greater than that of homogeneous materials) and striking hysteretic behavior (the
stress-strain equation of state has discrete memory). A model of these materials,
taking their macroscopic elastic properties to result from many mesoscopic hysteretic
elastic units, is developed. The Preisach-Mayergoyz description of hysteretic systems
and effective medium theory are combined to find the quasistatic stress-strain
equation of state, the quasistatic modulus-stress relationship, and the dynamic
modulus-stress relationship. Hysteresis with discrete memory is inherent in all three
relationships. The dynamic modulus-stress relationship is characterized and used
as input to the equation of motion for nonlinear elastic wave propagation. This
equation of motion is examined for one-dimensional propagation using a Green
function method. The out-of-phase component of the dynamic modulus due to
hysteresis is found to be responsible for the generation of odd harmonics and to

determine the amplitude of the nonlinear attenuation.

Introduction

The macroscopic elastic properties of highly hetero-
geneous materials, such as rock, are unusual and much
more complex than those of the materials from which
they are assembled. The velocity of sound ¢ in Berea
sandstone is changed by a factor of 2 upon raising
the pressure P from 0.1 MPa to 100 MPa [Bourbie
et al., 1987]. A factor of 2 change in the velocity of
sound in SiO3, nominally the material from which Berea
sandstone is composed, requires a pressure increase of
the order of 10* MPa [Ashcroft and Mermin, 1976].
Thus equations of state for a typical rock, for example,
stress versus strain, show nonlinearity that is orders of
magnitude greater than that of conventional materials
[Aleshin et al., 1980; Meegan et al., 1993]. Further,
these equations of state are often hysteretic and possess
memory features called discrete memory or end point
memory [Holcomb, 1981; Boiinott, 1992; Gist, 1994].

The fundamental reason for the hysteretic nonlinear
elastic behavior of rock is that rock contains an enor-
mous variety of mesoscopic structural features (for ex-
ample, cracks, joints, and contacts, of typical size =~
1 pm) with elastic properties that are specific to their
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structure. It is these mesoécopic elastic units that dom-
inate the response of the rock to both the external pres-
sure used to find a quasistatic equation of state and the
internal pressure that accompanies an elastic wave.

The purpose of this paper is to describe a theory of
the elastic behavior of hysteretic nonlinear materials.
We describe both the ambient state of the rock and per-
turbations away from that state. In the next section,
we introduce the Preisach-Mayergoyz (P-M) model of
hysteretic systems [Preisach, 1935; Mayergoyz, 1985;
Macki, 1993] and adapt it to describe the hysteretic
mesoscopic elastic units (HMEU) determining the elas-
tic properties of a rock. We combine the P-M model for
the behavior of the HMEU with effective medium theory
(EMT) [Kirkpatrick, 1971] to find the elastic response
of a rock that has experienced a specified pressure his-
tory. We discuss the quasistatic stress-strain equation of
state, the quasistatic modulus-stress relationship, and
the dynamic modulus-stress relationship. Next, we con-
sider elastic wave propagation in a hysteretic nonlinear
elastic material governed by a history dependent equa-
tion of state. We examine one-dimensional propagation
of compressional waves. The equation of motion for the
longitudinal displacement field contains the hysteretic
nonlinear dynamic modulus. We solve the equation of
motion for the displacement field using the Green func-
tion technique developed by McCall [1994]. This solu-
tion lets us identify the qualitative features in harmonic
generation that are signatures of nonlinearity and hys-
teresis. Finally, we extend the analysis to examine at-
tenuation due to a hysteretic nonlinear dynamic modu-
lus.
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Equation of State

We take a rock’s macroscopic elasticity to result from
a system of hysteretic mesoscopic elastic units (HMEU).
The connection between the HMEU and an equation
of state is made by combining a Preisach-Mayergoyz
(P-M) description of HMEU behavior with effective
medium theory (EMT). In this section, we use a simple
model for the HMEU to illustrate calculation of equa-
tions of state and discuss their properties.

Model the rock by a lattice of HMEU with lattice
spacing nominally 10 gm. To each HMEU we assign two
sets of parameters, a pair of pressures (P, P,), where
P, > P,, and a pair of equilibrium lengths (£, ¢,). The
meaning of these parameters in terms of the behavior
of the HMEU is illustrated in Figure 1. Assume for il-
lustrative purposes that the structural features we are
describing with the HMEU are compliant cracks. Then
the subscript ¢ stands for closed and the subscript o
stands for open. As the pressure applied to the HMEU
is raised from zero the HMEU responds by enforcing
the equilibrium length ¢,. At P, the HMEU changes
behavior and responds to pressures above P, by enforc-
ing the equilibrium length £,. If the pressure is de-
creased from above P, the HMEU enforces ¢, until the
pressure reaches P, < P,, at which time it reverts to
enforcing £,. Thus each HMEU has hysteretic elastic
behavior as a function of pressure. Since a 1-cm3 piece
of rock contains a vast number of structural features,
10°-10'2, this abstraction is justified. The equilibrium
lengths (£.,€,) may have a deterministic or statistical
connection to (P, P,).

In Figure 2a we show pairs of (P,, P,) in Preisach-
Mayergoyz (P-M) space. These pressure pairs were gen-
erated according to the rule described below in exam-
ple 1. The density of HMEU in the space of (P, P,)

V4 o —— >
=
&
=
3

e <€ ~€—>—

P P
° Pressure

Figure 1. A hysteretic mesoscopic elastic unit
(HMEU). A HMEU is characterized by a pair of pres-
sures (P, P,) and a pair of equilibrium lengths (£, £,).
At low pressure the equilibrium length of the HMEU
is £,. Upon raising the pressure to P., the equilibrium
length of the HMEU is £.. The equilibrium length re-
mains £; until the pressure is reduced to below P,.
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pairs, i.e., the number of elastic units in dP.dP, at
(Pe, Po), is p(P.,P,). A pressure protocol brings the
rock from P = 0 to P # 0 with n pressure reversals.
This history leads to a separation of P-M space into two
parts bounded by the curve E(P,,h) (see Figure 2a),
where h stands for the pressure history leading to the
rock’s current pressure state P. The pressure history of
the rock and E(P,, h) depend on the points of pressure
reversal Py, - - -, P, the maximum pressure to which the
rock has been subjected Ppay, and the current pressure
P. In Figure 2a the HMEU below and to the left of
E(P;,h) are in their closed configuration; the HMEU
above and to the right of E(P,, h) are in their open con-
figuration. A quasistatic equation of state for the rock,
e.g., a stress-strain relationship, can be found from a
variety of treatments of the lattice of HMEU. ;

To calculate a stréss-strain equation of state for a par-
ticularly simple model of the HMEU we take the same
two values (¢, ¢,), where £ = (1 —a)f,, 0 < a < 1,
for all HMEU. Thus the rock is a binary mixture of
springs, each enforcing one of two separations accord-
ing to its configuration: open or closed. In all of the
quantitative work below we use o = 0.1. We treat this
inhomogeneous system using effective medium theory
(EMT) as illustrated in the appendix. Independent of
the particular geometry chosen for the lattice of HMEU
we find that the rock can be replaced by a uniform sys-
tem with springs that enforce a separation ¢, where ? is
the average of £,

Z[E] = L+ (¢~ EO)NC[E], 1)
LE] = £,(1-aN.[E)]),
where N, is the fraction of closed elastic units. We
define the strain
[E) = ﬂ%fi = —aN,. (2)

The notation [E] stands for “functional of”; 7 is a func-
tional of the state E. In this simple model the equation
of state is completely determined by E(P,, k). A second
term proportional to P/Kjg, where K, is the modulus
of the individual grains, could be added to (2) to ac-
count for linear elasticity in the grains, the asymptotic
response of the rock at pressures high enough to close
defects but below failure. We will neglect the linear
grain elasticity, since its contribution to the total strain
is additive and, in most cases, small compared to the
nonlinear component.

If the density in P-M space p(P., P,) is strictly diag-

onal, _
p(P., P,) = A(P:, Po)P8(P. — P,), (3a)

where P is an average pressure to normalize the delta
function. The stress-strain equation of state has no hys-
teresis, the individual HMEU have no hysteresis, and
the rock as a whole has no hysteresis. The area of a
hysteresis loop is related to the fraction of the density
p(P., P,) that is off the diagonal. A typical rock will
have p of the form



MCCALL AND GUYER: HYSTERETIC NONLINEAR ELASTIC MATERTALS

100 3
(a) &fg.:
80 - Sk
R, kg e
60 r P "“f?t%: w:z;.:é
P, EQP_, h) PN A
c oY 8 ° o g8°°
40 i e 8 20 o:o‘ a? }: .ognc 0}
o’,.:f.'o }“".. .‘: o %
20 eyt s, o
0 . , . i
0 20 40 60 80 100
120
(b) 5
100 +
1
o 80
2 3
% 60 + A
40t
4
20 +
2
0
Time
100
©
80 1 :
(5]
‘5 60 T 3
2
& 40+ /4
20 -
0

0 002 004 006 0.08 0.1
Strain

Figure 2. Elastic equation of state, example 1. (a)
The points (P, P,) in P-M space; 500 points generated
from equation (4) are shown. The heavy curve corre-
sponds to E(P,, h) for the pressure protocol at point A
in Figure 2b. (b) The pressure history followed in con-
structing the equation of state. Points 1-5 are points of
pressure reversal. (c) The stress-strain equation of state
appropriate to Figures 2a and 2b and equation (2).

o(P,, P,) = A(P,, P,)P§(P, — P,) + B(P,, P,), (3b)

where B(P,, P,) is the off-diagonal component of p. Dis-
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crete memory in the number of open or closed HMEU is
a consequence of the structure of P-M space. Discrete
memory in the stress-strain equation of state follows

from (2).
Example 1

A set of 8000 points (P, P,) in P-M space were gen-
erated according to the rule

P. 100723,
Po = Pcrtl>/3)

1l

(4)

where 7. and r, are random numbers uniformly dis-
tributed between 0 and 1. Representative points found
from this rule are shown in Figure 2a. The rock mod-
eled by this set of HMEU is carried through the pres-
sure protocol shown in Figure 2b in which the pressure
is raised and lowered three times. Values of the pres-
sure are in arbitrary units. At point A on the pressure
protocol the pressure history has included four points
of pressure reversal, denoted 1-4. The corresponding
separation curve E(P,, h) is shown in Figure 2a. As the
pressure advances beyond 80, a new pressure regime
is explored, and the pressure reversal points 1-4 are
erased. In Figure 2c, we show stress as a function of
the magnitude of strain appropriate to the P-M space
in Figure 2a, the pressure history in Figure 2b, and
equation (2). The hysteresis loops are traversed in the
clockwise direction. The qualitative property of these
hysteresis loops, that the strain does not immediately
release with a decrease in pressure, results from the off-
diagonal part of p(P., P,). Some of the elastic units
that close upon advancing P by AP do not reopen upon
reducing the pressure by AP. Discrete memory is ap-
parent in the stress-strain curve. These stress-strain re-
lations involve large, slow changes in pressure. Thus we
refer to them as the quasistatic stress-strain equations
of state.

Example 2

A set of 8000 points (P, P,) in P-M space were gen-
erated according to the rule

P
P,

10072,
P.\/rs,

where r. and 7, are random numbers uniformly dis-
tributed between 0 and 1. Representative points found
from this rule are shown in Figure 3a. The rock mod-
eled by this set of HMEU is carried through the pressure
protocol shown in Figure 3b. This pressure protocol is
similar to one used by Boitnott [1993] in a study of hys-
teresis in the Young’s modulus of Berea sandstone. In
Figure 3c we show the stress-strain curve appropriate
to the P-M space in Figure 3a, the pressure history in
Figure 3b, and (2). There are qualitative differences be-
tween the stress-strain curves in Figures 2c and 3c that
correlate with the P-M space densities shown in Fig-
ures 2a and 3a. The P-M space density in Figure 2a is
highest at high pressures, while the P-M space density

(®)
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Figure 3. Elastic equation of state, example 2. (a) The points (P, P,) in P-M space; 1000 points
generated from equation (5) are shown. (b) The pressure protocol. (c) The stress-strain equation
of state appropriate to Figures 3a and 3b and equation (2). (d) The elastic modulus as a function
of stress from equation (6). The points of pressure reversal are labeled 1-4 in Figures 3b-3d.

in Figure 3ais highest at low pressures. Thus the rate of
strain change with pressure is highest at high pressure
in example 1 (negative curvature in the pressure versus
strain curve) and highest at low pressure in example 2
(positive curvature in the pressure versus strain curve).

The elastic modulus is defined in terms of the stress-
strain equation of state:

0o

In Figure 3d, we show the modulus as a function of
stress, calculated from (6) and the stress-strain equa-
tion of state in Figure 3c. The modulus-stress equation
of state has a bow tie appearance (very lopsided in this
example) because of the cusps at the end points of each
stress-strain hysteresis loop. The modulus is discontin-
uous at these end points. For all four hysteresis loops in
Figure 3¢, the low-P part of the equations of state are
the same; the HMEU opened and closed at low pres-
sure are the same for all four loops. These qualitative

K

features agree with the results of experimental investi-
gations [Boitnott, 1992].

Example 3

P-M space was filled in the same way as in exam-
ple 2 (see Figure 3a). The rock is carried through the
pressure protocol shown in Figure 4a. This pressure
protocol takes the rock around a large hysteresis loop
with 18 small closed excursions along the way. The
stress-strain curve that results from the P-M space in
Figure 3a, the pressure protocol in Figure 4a, and (2) is
shown in Figure 4b. Each of the small pressure excur-
sions generates a small hysteresis loop in the interior
of the large loop. If we calculate the elastic modulus
around a small loop using (6), we find a bow tie shaped
hysteresis loop just as for the large loops of the previous
examples. As a small loop gets smaller, we may wish
to study an average property of the loop. We define
the average modulus of a stress-strain hysteresis loop
to be the slope of the line connecting the lower cusp
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Figure 4. Elastic equation of state, example 3. The P-M space is filled as in Figure 3a. (a)
The pressure protocol. The pressure goes from 0 to 100 in steps of 10 with a pressure reversal
at 10,20,---,100. A similar procedure is followed as the pressure goes from 100 to 0. (b) The
stress-strain equation of state appropriate to the P-M space of Figures 3a and 4a and equation
(2). The large hysteresis loop and the small hysteresis loops are all traversed clockwise. (¢) The
elastic modulus of the large loop for increasing pressure (solid circles), and the average modulus
as a function of stress for the interior loops labeled in Figure 4b (open circles).

to the upper cusp. Since the small loops are interior
to the large loop, the average modulus must be larger
for small stress-strain loops than for large stress-strain
loops.

In Figure 4c we show the average modulus-stress re-
lationship for the 17 loops labeled in Figure 4b. We
imagine that the modulus appropriate to the descrip-
tion of wave propagation is similar to that derived from
the small loops we see in Figure 4c. Thus we conclude
that a modulus measured dynamically will be larger
than a modulus measured quasistatically and would ex-
hibit bow tie behavior if the entire hysteresis loop rather
than its average value were studied.

Note that small stress-strain loops on opposite sides
of the large stress-strain loop involving the same pres-
sure excursion have the same average modulus, e.g.,
loops 4 and 15. Thus the average modulus as a function
of ambient pressure has no hysteresis. The empirical
fact is that both the stress-strain equation of state and
the average modulus-stress relationship are hysteretic

[Gist, 1994]. The model of elastic response of a rock
that we have developed to this point gives one of these
results but not the other. So far the pressure that acts
on the individual HMEU is the external pressure on the
system. Below we consider a simple example in which
the HMEU respond to the average condition of the rock.

Example 4

A set of 8000 points (P,, P,) were generated according
to the rule

P,

P,

I

10072

Pcrgg"25+°'75N°), (7)
where r, and 7, are random numbers uniformly dis-
tributed between 0 and 1. Equation (7) is equivalent
to a mean field interaction between the HMEU, which
makes the behavior of the individual HMEU depend
on the average condition of the rock. When N, = 0,
the HMEU fill P-M space primarily near the diago-
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nal. When N, = 1, the HMEU fill P-M space more
uniformly. In Figure 5a, the initial distribution of
HMEU corresponding to P = 0, N, = 0, is shown with
solid circles; the distribution of HMEU corresponding
to P = 100, N, = 1, is shown with open squares. The
rock is carried through the pressure protocol in Fig-
ure 4a. The resulting stress-strain equation of state
is shown in Figure 5b. In Figure 5c, we show the
quasistatic modulus-stress relationship derived from the
slope of the large stress-strain hysteresis loop and the
average modulus-stress relationship derived from the
small stress-strain hysteresis loops. The average mod-
ulus for small pressure excursions, i.e., the equivalent
of the average dynamic modulus, is always greater than
the quasistatic modulus at the same pressure. The aver-
age modulus-stress relationship is hysteretic but contin-
uous at its ends, in contrast to the quasistatic modulus-
stress relationship. Both measures of modulus versus
stress have end point memory.

MCCALL AND GUYER: HYSTERETIC NONLINEAR ELASTIC MATERIALS

Elastic Wave Propagation

In this section we apply a Green function formalism
developed by McCall [1994] to describe elastic wave
propagation in rock. We wish to focus on the conse-
quences of hysteresis and will therefore limit ourselves
to the propagation of compressional waves in a single
dimension.

We take the equation of motion for the displacement
field in a rock at pressure P to be

2U x 2 ulz
et _ 8%{K [1+a(z,t>]f’7§-;t—)}+5'(z,t>,
®)

where u is the z component of the displacement field,
p is the (constant) rock density, K is the average dy-
namic modulus at P, « describes the departure of the
modulus from K ([ a(z,t)dt = 0 over one pressure cy-
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Figure 5. Elastic equation of state, example 4. (a) The points (P., P,) in P-M space; 1000
points generated from (7) are shown. The solid circles are for P = 0, N, = 0; the empty squares
are for P = 100, N, = 1. (b) The stress-strain equation of state for Figure 5a, the pressure
protocol in Figure 4a, and equation (2). (c) The elastic modulus of the large loop (open circles)
and the average modulus of the small loops (solid circles) as a function of stress.
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cle), and S’(z,t) is the external source that drives the
system. The departure from constant modulus a(z, )

is a functional of the pressure field:

o(z,t) = a[sP(z,1)] = a [%ﬁ] )

0

In the frequency domain, (8) becomes

2
_ L0 s du(e,g)
=-5(z,w) %2 | 2n a(z,w’) Fy (10)

where k%2 = w?p/K, S=5'/K,and ¢ = w — w'.

Using the Green function method, we develop a sys-
tematic treatment of (10) without initially specifying
a(z,w) as follows.

1. Specify the external disturbance.

2. Find the Green function g(z,z’,w) for the linear
problem, a(z,w) = 0, and the specific geometry to be
studied. This problem may include attenuation.

3. Develop u(z,w) and a(z,w) in powers of the

strength of the source S(z,w).
Details of this procedure, such as how to include at-
tenuation, are given by McCall [1994]. For the leading
nonlinear correction due to a(z,w) to the linear dis-
placement field uo(z,w), one finds

uy(z,w) =/d:c'
d_w’ 1 __a_ AN 6”0(-’”,;45)
/ 2 g(x:x’w)ax, [QO(Iaw) 9z’ )

(11)

where ap(z,w) = a[0ug(z,w)/0z] and the linear dis-
placement field uo(z,w) is

(12)

The traditional way of treating nonlinearity in the
equation of motion of an elastic wave is to develop the
strain energy as an analytic function of the strain field
Ou/dz [Murnaghan, 1951; Landau and Lifshitz, 1959].
For hysteretic materials such as rocks, we showed that
pressure cycles cause a change in the elastic modulus
that is not an analytic function of du/dz. Using the
P-M space and EMT model, we assess the effect on the
modulus of small pressure fluctuations

uo(z,w) :/dz'g(x,z’,w)S(:c',w).

§P(x,t) = ~F%.

(13)
For a linear displacement field ug = U sin(koz — wot)
and 6Py given by (13), we can represent a(z,t) in the
form of a Fourier series in 7 = kgz — wot:

[e o] oo
ao(z,t) = % + Z ap COSNT + Z bysinnr, (14)

n=1 n=1
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where the a,, are the amplitudes of the part of the mod-
ulus that is in phase with the pressure fluctuation and
the b, are the amplitudes of the part of the modulus
that is out of phase with the pressure. The amplitudes
a, and b, are proportional to §P,. We have chosen K
so that ag = 0.

Using the Green function for an infinite, homoge-
neous material, and carrying through the algebra called
for by (11), we find the perturbation displacement is

koUz =
02 cosT Z cpcos(nT — ¢y),  (15)

n=1

U](x,t) = —

where ¢, = (a2 + b2)1/2) tan ¢, = bn/an, and k2 =
wip/K.

By writing aq as a Fourier series in (14), we have the
flexibility to look at the traditional cubic anharmonic
description of nonlinearity as well as extreme cases of
nonanalytic nonlinearity. However, independent of the
precise nature of the nonlinear process there are several
observations of general validity about uy(z,1).

1. The amplitude at distance z from the source is
proportional to z, independent of the precise choice of
ao(z,t). This proportionality represents the fact that
nonlinear elastic waves interact in the system over the
entire range between source and observer.

2. The amplitude is proportional to (koU)2. The
first factor of koU comes from the elastic wave incident
on the scattering amplitude. The second factor comes
about because the amplitudes a, and b, are propor-
tional to the pressure fluctuation, i.e., to koU.

3. Hysteresis that is responsible for the out-of-phase
part of o, i.e., the b, terms in the Fourier series, exhibits
itself in the phase of the scattered wave that is seen by
the observer.

Let us look at several examples to appreciate the con-
tent of (15).

Standard Cubic Anharmonicity

The traditional cubic anharmonic description of non-
linearity is equivalent to setting o = B0u/dz. Thus if
ug = U sin(koz — wot), then

ap(z,t) = BkoU cos T, (16)
where 7 = kox — wot. This choice of ag versus §P is
equivalent to setting a, = BkoUéb, 1 and b, = 0 in (14);
o has a component in phase with pressure but none
out of phase with pressure. The first-order nonlinear
term in the displacement field, u;i(z,t) in (15), is the
well-known result
ui(z,t) =

[cos2T +1]. 17)

B(koU)?z
4

A single-frequency source gives rise to a displacement

field with a zero-frequency component and a component

at twice the driving frequency, as well as the linear com-

ponent at the driving frequency. The amplitude of the

nonlinear term is proportional to the propagation dis-
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tance z, the square of the source amplitude U, and the
square of the source frequency wo.

Out-of-Phase Anharmonicity

Take the departure from constant modulus to be en-
tirely out of phase with the pressure, for example,

ao(z,t) = vkoU sin 27.

(18)

In this case, a, = 0 and b, = YkoUbpn 2. Thus the
stress-strain relationship has an in-phase part due to the
average modulus K and an out-of-phase part due to the
departure from constant modulus Kag (see equation
(8)). The out-of-phase part of the stress with strain
is the hysteresis from which attenuation is calculated.
We call this choice of ag a hysteretic nonlinearity. For
u1(z,t) we find

7(k0i]) z (19)

Note the phase difference between this result and stan-
dard cubic anharmonicity, (17). The elastic wave re-
sponse to a hysteretic nonlinearity is 90° out of phase
with the response to a nonhysteretic nonlinearity.

A Bow Tie

ui(z,t) = — (sin37 +sinT).

Consider the case in which the pressure has been
raised monotonically to pressure Py = P 4+ AP and
the density in P-M space in the vicinity of P is (see
equation (3b))

P_

p(P., P,) = AP§(P. — P,) + B, 5

INIA

Pc S F+

o < Pe
o (20)
where P_ = P — AP, and A and B are constants.
Reduce the pressure P a small amount to P_ and then
raise it again, following the number closed N, along

both paths (down and up). At pressure P, where P_ <
P < Py, the changes in the number of closed units are

AN()= APP-Fy)- [P, (2la)
AN.(1) = AP[P-P_]+ %P -P_)% (21b)
The corresponding strains are
e(l) = e(P4) — aN.(1), (22a)
e(1) = e(P-) — aNe(1). (22b)
The inverse of the modulus is given by (6):

1 Oe

=3P (23)
For the strains of (22)
K
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K(D) = 55 (24b)
where . 1
K= m, (25a)
_ ﬁ%’ (25b)
P-P

op = = (25¢)

For wave propagation, we take ép < 1 and find
K(]) = K[1+ \ép], (26a)
K(1) ~ K[1 - \ép]. (26b)

The modulus as a function of pressure looks like a bow
tie.

Using the same linear displacement as in the previous
examples, we set

ép(r) = —A=P- cos T, (27)
P
and find
AP [ cosr, 0<7<m,
xo(z,1) = ’\? { —cost, w™<T<2m, (28)

Because of the odd symmetry about 7 = =, the only
nonzero coefficients in the Fourier series expansion of
ag, (14), are the out-of-phase with pressure coefficients
b, for n even. Equation (28) can be represented by

8AAP & n
t) = —— R
0(2,1) = == D

n=1

(29)

sin 2nT.

Note that the coefficients of sin2nr decrease as 1/n;
thus this bow tie example is similar to the out-of-phase
anharmonic example above, in leading approximation.
For ui(z,t) we find

U (:c,t) = __-___2]60U-’Z\AP
TP
>~ n
E yr [sin(2n + 1)7 + sin(2n — 1)7] .(30)
n=1 ne =

The bow tie character of the modulus is out of phase
with the pressure and leads to odd harmonics in the dis-
placement. In reality, we expect both even and odd har-
monics in the displacement, with odd harmonics domi-
nating when hysteresis is important.

A Hysteretic Modulus From Figure 5b

In Table 1 we show the amplitudes ay, b,, ¢,, and ¢,
of the Fourier representation, (14), of the loop 4 mod-
ulus in Figure 5b. We took the modulus loop to be
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Table 1. Fourier Coefficients for a Modulus Bow Tie

n an bn Cn On
0 1.000 0.000 1.000 0.0
1 -0.107 0.050 0.118 -24.9
2 -0.066 0.326 0.333 -78.6
3 0.045 0.192 0.197 77.0
4 -0.177 0.213 0.277 -50.3
5 0.010 0.166 0.166 86.6
6 -0.143 0.158 0.213 -47.9
7 0.060 0.131 0.144 65.4
8 -0.177 0.123 0.216 -34.8
9 -0.067 0.108 0.127 58.3
10 -0.114 0.108 0.157 -43.5

the result of one cycle in pressure of an elastic wave,
plotted modulus versus time, and Fourier analyzed the
result. The even amplitudes of the modulus are larger
than the odd amplitudes (c2n > ¢25~1); the even out-of-
phase amplitudes b,, are generally larger than the even
in-phase amplitudes a, (¢, is large). Thus, similar to
the analytic bow tie example above, the nonlinear dis-
placement u; will contain strong odd harmonics and
large components 90° out of phase with traditional cu-
bic anharmonicity. From the amplitudes ¢, and phase
angles ¢, we can construct u;(z,t) according to (15).

Energy Loss; @

In the previous section, we describe elastic wave prop-
agation in a hysteretic, nonlinear elastic system brought
to an elastic state by a prescribed pressure protocol. An
important element in the calculation was the hysteretic
component of the elastic response, that is, the compo-
nent of a(z,t) in (8) that is out of phase with the pres-
sure. This part of a(z,t) is described by the b, terms
in (14) and contributes to the attenuation. We define
Qby 1 AFE

—_= =, (31)
Q E
where AE is the energy loss per cycle and E is the
average energy in the wave during a cycle. For AE we
take ‘

AE = ]{ ode, (32)
where § stands for integration over one cycle in time,
and o is the effective stress found from the first term
on the right-hand side of (8),
=R 1+ ofe, )] oo (39)
o= a(z,t)] 5
We develop AFE as a series in the strength of the non-
linearity in direct analogy with the method of solution
to (8) in McCall [1994]. We find to first order that
AFE = AEy + AE;, where AEj is the contribution to
the energy loss due to the linear elastic response of the
system and

3UQ 6’(10

AE; = cgfa(z,t)—b?gdt, (34)

23,895

where ¢2 = K /po. Using ug = U sin 7, where 7 = koz —
wot, we have '

6uo 61.10 1 2 .

— — = —wy(koU)" sin 27.

3z oz~ 3ok
The integral around a cycle in time picks out the term
in a(z,t) that is proportional to sin27. Thus it is the
amplitude by of the out-of-phase component of the non-
linear elasticity that is responsible for the attenuation.

We have

(35)

(36)

where Q5! = AEy/E and E = pc (koU)*.

Recall that by x 6Py o< koU. The hysteretic part of
the nonlinear elasticity is responsible for the nonlinear
attenuation. The coefficient by is a measure of the size
of this nonlinear attenuation [Day et al., 1993]. In the
work of Day and Minster [1984], nonlinear attenuation
Q@ is found to be the cause of hysteresis. Here, in con-
trast, we find hysteresis to be the cause of nonlinear
attenuation.

Conclusions

In this paper we have sketched a theoretical descrip-
tion of elastic behavior in hysteretic nonlinear material.
We modeled the elastic material, rock, by assuming its
macroscopic properties are due to a large number of hys-
teretic mesoscopic elastic units (HMEU). To obtain the
elastic equations of state, we combined the Preisach-
Mayergoyz (P-M) description of a set of HMEU with
effective medium theory (EMT). This treatment em-
phasizes the importance of pressure history in the de-
termination of the elastic state of a rock. The con-
nection between the density of HMEU in P-M space
p(Pe, P;) and qualitative features of the stress-strain
equation of state, the quasistatic modulus-stress rela-
tionship, and the dynamic modulus-stress relationship
were illustrated with four examples.

The qualitative features seen in the quasi-static mod-
ulus-stress relationship are also present in the small-
amplitude pressure cycles that accompany propagation
of an elastic wave. Thus a hysteretic nonlinear dy-
namic modulus is input to the description of elastic
wave propagation in a rock. We employed a Green
function method to study the equation of motion of
the longitudinal displacement field in the presence of
such a modulus. This method let us develop a system-
atic hierarchy of equations for the displacement field.
We described the behavior of the displacement field for
a series of examples. Finally, we described the con-
nection between hysteretic nonlinear elasticity and the
nonlinear attenuation.

This theoretical description of elastic behavior in hys-
teretic nonlinear elastic material gives us most rock
properties, independent of a particular model of meso-
scopic structural features: (1) a hysteretic quasi-static
stress-strain equation of state with end point mem-
ory, (2) a quasi-static modulus-stress relationship in the
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form of a bow tie, (3) a hysteretic dynamic modulus-
stress relationship with end point memory, (4) a dy-
namic modulus greater than the corresponding qua-
sistatic modulus, (5) a description of elastic wave prop-
agation, using the dynamic modulus-stress relationship,
that leads to copious production of odd harmonics, and
(6) a connection between the strength of the nonlinear
attenuation and the strength of odd harmonic produc-
tion. ’

We close this section with a series of remarks about
the theoretical model. First, we have found items 1-5
above by forward modeling. The P-M space descrip-
tion of the HMEU may be used in conjunction with
experimental measurements to do the inverse problem
and learn about the structural features in a rock (work
in progress). Second, among the issues that must be
considered when comparing measurements to the theo-
retical model are (1) are effective medium theory and
mean field theory adequate, and (2) what model of
the HMEU is most appropriate? Third, we have only
touched on the relationship between @ and nonlinear
attenuation. We plan to return to this phenomenon in
the context of specific HMEU models in the immediate
future. Fourth, we have discussed the equations of state
using a particularly simple abstraction of the properties
of the structural features. More elaborate modeling is
possible and tractable. That such a treatment will work
is clear from the series of papers by Holcomb [1981] in
which a description qualitatively equivalent to the P-M
space description is validated. Fifth, the elastic state
of a rock is not solely determined by its pressure his-
tory. The behavior of the HMEU is strongly influenced
by the fluid saturation history of the sample. Filling
and emptying fluid from a pore system is itself a his-
tory dependent phenomena that can be described using
the P-M space picture [Smith et al., 1987; Guyer, 1993].
(6) For a pressure fluctuation associated with an acous-
tic disturbance, the timescale is 1072-10=% s. For a
pressure fluctuation associated with a quasi-static mea-
surement [Boitnott, 1992; Gist, 1994], the timescale is
1-10 s. The hysteretic response of a system may well
depend on timescale [Brennan, 1981]. We have made
no attempt to add this frequency dependence to our
model. It is straightforward, however, to model a sys-
tem of HMEU with frequency dependent response, and
the P-M space description lends itself naturally to this.

Our treatment of the elastic equation of state and of
elastic wave propagation have general validity. How-
ever, we have deliberately used a sequence of approx-
imations that lets us show the content of the model
with a minimum of computational complexity. These
approximations and simplifications are not required; we
can move away from them when our understanding of
the mesoscopic structure of the system becomes firmer
or when we adopt specific models of the HMEU.

Appendix: Effective Medium Theory

The goal of effective medium theory is to replace a
nonuniform system by a uniform system with an average
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property characteristic of the nonuniform system. The
method is to embed a single unit with the distribution
of characteristics in the original system in an otherwise
uniform system, average over the distribution carried
by the single unit, and require that the uniform system
have a value that makes the average over the single unit
vanish.

Model a system of elastic units as a lattice of masses
connected by springs. For simplicity, consider a one-
dimensional lattice of masses at positions u, = nl+z,,
where £ is an average equilibrium length of the springs,
zn is the departure from an average equilibrium posi-
tion, and —N < n < N. The spring between masses
n and n + 1 is characterized by an equilibrium length
£nn+1 and a spring constant . Assume the motion of
each mass is influenced only by its nearest neighbors.
Then the potential energy of elastic unit n is

r
5 {[zn+1 —ZTn + (e - Znn+1)]2

+ [2n = Zac1 + (€= ban-1))*},

Vo =
(A1)

and the equation of motion for the position of the nth
mass away from its equilibrium position is

0%z,
ot?

m

= F[zn+1_23n+zn—1"(enn+1 '_Znn—l)]- (A2)

Choose the equilibrium length enforced by the springs
£, = £ for all springs except the spring between masses
0 and 1; let £o; = a. Then we rewrite (A2) as

Oz,
a2

m

I1[-"’n+1 — 220 + Ty — (Z - a)(6n1 - 6n0)]-
(A3)

The effective medium theory requirement is that when
z, is averaged over the distribution of a, (z,,) = 0. Thus
we must solve for z,,. Taking the Laplace transform of
(A3), specifying the t = 0 displacement and velocity to
be zero,

ms?&, = D[#n41 — 28n + &noy — s~ (€ — a)(8n1 — 6no)),

(Ad)
where Z,, is the Laplace transform of z,,. Finally, we
write &,, and é,,,, as Fourier series in wave vector space,

1 .
Ep = i Z zgetttn, (Aba)
q
Sam = = 3 gfatln=m), (A5b)
7
and find -
- — it
I'(€ - a)(1—e'?) (A6)

T s + 4sT'sin?(g¢/2)

Requiring (z,) = 0 leads to the result £ = (a) used
to calculate strain. This result is independent of the
precise geometry of the uniform system in which the
spring of length a is embedded.
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